Сортировка в Java

1. Обзор

В этой статье будет показано, как применить сортировку к массивам , спискам , множествам и картам в Java 7 и Java 8.

2. Сортировка с помощью массива

Начнем с сортировки целочисленных массивов с помощью метода Arrays.sort () .

Мы определим следующие массивы int в методе @Before jUnit:

@Before public void initVariables () { toSort = new int[] { 5, 1, 89, 255, 7, 88, 200, 123, 66 }; sortedInts = new int[] {1, 5, 7, 66, 88, 89, 123, 200, 255}; sortedRangeInts = new int[] {5, 1, 89, 7, 88, 200, 255, 123, 66}; ... }

2.1. Сортировка полного массива

Теперь воспользуемся простым API Array.sort () :

@Test public void givenIntArray_whenUsingSort_thenSortedArray() { Arrays.sort(toSort); assertTrue(Arrays.equals(toSort, sortedInts)); }

Несортированный массив теперь полностью отсортирован:

[1, 5, 7, 66, 88, 89, 123, 200, 255]

Как упоминалось в официальном JavaDoc, Arrays.sort использует двухуровневую быструю сортировку для примитивов . Он предлагает производительность O (n log (n)) и, как правило, быстрее, чем традиционные (одноопорные) реализации Quicksort. Однако он использует стабильную, адаптивную, итеративную реализацию алгоритма сортировки слиянием для массива объектов.

2.2. Сортировка части массива

Arrays.sort имеет еще один API сортировки, который мы обсудим здесь:

Arrays.sort(int[] a, int fromIndex, int toIndex)

Это позволит отсортировать только часть массива между двумя индексами.

Давайте посмотрим на быстрый пример:

@Test public void givenIntArray_whenUsingRangeSort_thenRangeSortedArray() { Arrays.sort(toSort, 3, 7); assertTrue(Arrays.equals(toSort, sortedRangeInts)); }

Сортировка будет выполняться только по следующим элементам подмассива ( toIndex будет эксклюзивным):

[255, 7, 88, 200]

Результирующий отсортированный подмассив, включающий основной массив, будет:

[5, 1, 89, 7, 88, 200, 255, 123, 66]

2.3. Java 8 Arrays.sort против Arrays.parallelSort

Java 8 поставляется с новым API - parallelSort - с подписью, аналогичной API Arrays.sort () :

@Test public void givenIntArray_whenUsingParallelSort_thenArraySorted() { Arrays.parallelSort(toSort); assertTrue(Arrays.equals(toSort, sortedInts)); }

За кулисами parallelSort () он разбивает массив на разные подмассивы (согласно степени детализации алгоритма parallelSort ). Каждый подмассив сортируется с помощью Arrays.sort () в разных потоках, так что сортировка может выполняться параллельно, и окончательно объединяются в отсортированный массив.

Обратите внимание, что общий пул ForJoin используется для выполнения этих параллельных задач и последующего объединения результатов.

Результат Arrays.parallelSort будет таким же, как и у Array.sort, конечно, это просто вопрос использования многопоточности.

Наконец, есть аналогичные варианты API Arrays.sort в Arrays.parallelSort :

Arrays.parallelSort (int [] a, int fromIndex, int toIndex);

3. Сортировка списка

Теперь давайте воспользуемся API Collections.sort () в java.utils.Collections - чтобы отсортировать список целых чисел:

@Test public void givenList_whenUsingSort_thenSortedList() { List toSortList = Ints.asList(toSort); Collections.sort(toSortList); assertTrue(Arrays.equals(toSortList.toArray(), ArrayUtils.toObject(sortedInts))); }

Список до сортировки будет содержать следующие элементы:

[5, 1, 89, 255, 7, 88, 200, 123, 66]

И, естественно, после сортировки:

[1, 5, 7, 66, 88, 89, 123, 200, 255]

Как упоминалось в Oracle JavaDoc for Collections.Sort , он использует модифицированную сортировку слиянием и предлагает гарантированную производительность n log (n) .

4. Сортировка набора

Затем давайте воспользуемся Collections.sort () для сортировки LinkedHashSet .

Мы используем LinkedHashSet, потому что он поддерживает порядок вставки.

Обратите внимание , как для того, чтобы использовать сортировки API в коллекции - мы первый Оберточный набор в списке :

@Test public void givenSet_whenUsingSort_thenSortedSet() { Set integersSet = new LinkedHashSet(Ints.asList(toSort)); Set descSortedIntegersSet = new LinkedHashSet( Arrays.asList(new Integer[] {255, 200, 123, 89, 88, 66, 7, 5, 1})); List list = new ArrayList(integersSet); Collections.sort(Comparator.reverseOrder()); integersSet = new LinkedHashSet(list); assertTrue(Arrays.equals( integersSet.toArray(), descSortedIntegersSet.toArray())); }

Метод Comparator.reverseOrder () меняет порядок, наложенный естественным порядком.

5. Сортировочная карта

В этом разделе мы начнем рассматривать сортировку карты - как по ключам, так и по значениям.

Давайте сначала определим карту, которую мы будем сортировать:

@Before public void initVariables () { .... HashMap map = new HashMap(); map.put(55, "John"); map.put(22, "Apple"); map.put(66, "Earl"); map.put(77, "Pearl"); map.put(12, "George"); map.put(6, "Rocky"); .... }

5.1. Сортировка карты по ключам

We'll now extract keys and values entries from the HashMap and sort it based on the values of the keys in this example:

@Test public void givenMap_whenSortingByKeys_thenSortedMap() { Integer[] sortedKeys = new Integer[] { 6, 12, 22, 55, 66, 77 }; List
    
      entries = new ArrayList(map.entrySet()); Collections.sort(entries, new Comparator
     
      () { @Override public int compare( Entry o1, Entry o2) { return o1.getKey().compareTo(o2.getKey()); } }); Map sortedMap = new LinkedHashMap(); for (Map.Entry entry : entries) { sortedMap.put(entry.getKey(), entry.getValue()); } assertTrue(Arrays.equals(sortedMap.keySet().toArray(), sortedKeys)); }
     
    

Note how we used the LinkedHashMap while copying the sorted Entries based on keys (because HashSet doesn't guarantee the order of keys).

The Map before sorting :

[Key: 66 , Value: Earl] [Key: 22 , Value: Apple] [Key: 6 , Value: Rocky] [Key: 55 , Value: John] [Key: 12 , Value: George] [Key: 77 , Value: Pearl]

The Map after sorting by keys:

[Key: 6 , Value: Rocky] [Key: 12 , Value: George] [Key: 22 , Value: Apple] [Key: 55 , Value: John] [Key: 66 , Value: Earl] [Key: 77 , Value: Pearl] 

5.2. Sorting Map by Values

Here we will be comparing values of HashMap entries for sorting based on values of HashMap:

@Test public void givenMap_whenSortingByValues_thenSortedMap() { String[] sortedValues = new String[] { "Apple", "Earl", "George", "John", "Pearl", "Rocky" }; List
    
      entries = new ArrayList(map.entrySet()); Collections.sort(entries, new Comparator
     
      () { @Override public int compare( Entry o1, Entry o2) { return o1.getValue().compareTo(o2.getValue()); } }); Map sortedMap = new LinkedHashMap(); for (Map.Entry entry : entries) { sortedMap.put(entry.getKey(), entry.getValue()); } assertTrue(Arrays.equals(sortedMap.values().toArray(), sortedValues)); }
     
    

The Map before sorting:

[Key: 66 , Value: Earl] [Key: 22 , Value: Apple] [Key: 6 , Value: Rocky] [Key: 55 , Value: John] [Key: 12 , Value: George] [Key: 77 , Value: Pearl]

The Map after sorting by values:

[Key: 22 , Value: Apple] [Key: 66 , Value: Earl] [Key: 12 , Value: George] [Key: 55 , Value: John] [Key: 77 , Value: Pearl] [Key: 6 , Value: Rocky]

6. Sorting Custom Objects

Let's now work with a custom object:

public class Employee implements Comparable { private String name; private int age; private double salary; public Employee(String name, int age, double salary) { ... } // standard getters, setters and toString }

We'll be using the following Employee Array for sorting example in the following sections:

@Before public void initVariables () { .... employees = new Employee[] { new Employee("John", 23, 5000), new Employee("Steve", 26, 6000), new Employee("Frank", 33, 7000), new Employee("Earl", 43, 10000), new Employee("Jessica", 23, 4000), new Employee("Pearl", 33, 6000)}; employeesSorted = new Employee[] { new Employee("Earl", 43, 10000), new Employee("Frank", 33, 70000), new Employee("Jessica", 23, 4000), new Employee("John", 23, 5000), new Employee("Pearl", 33, 4000), new Employee("Steve", 26, 6000)}; employeesSortedByAge = new Employee[] { new Employee("John", 23, 5000), new Employee("Jessica", 23, 4000), new Employee("Steve", 26, 6000), new Employee("Frank", 33, 70000), new Employee("Pearl", 33, 4000), new Employee("Earl", 43, 10000)}; }

We can sort arrays or collections of custom objects either:

  1. in the natural order (Using the Comparable Interface) or
  2. in the order provided by a ComparatorInterface

6.1. Using Comparable

The natural order in java means an order in which primitive or Object should be orderly sorted in a given array or collection.

Both java.util.Arrays and java.util.Collections have a sort() method, and It's highly recommended that natural orders should be consistent with the semantics of equals.

In this example, we will consider employees with the same name as equal:

@Test public void givenEmpArray_SortEmpArray_thenSortedArrayinNaturalOrder() { Arrays.sort(employees); assertTrue(Arrays.equals(employees, employeesSorted)); }

You can define the natural order for elements by implementing a Comparable interface which has compareTo() method for comparing current object and object passed as an argument.

To understand this clearly, let's see an example Employee class which implements Comparable Interface:

public class Employee implements Comparable { ... @Override public boolean equals(Object obj) { return ((Employee) obj).getName().equals(getName()); } @Override public int compareTo(Object o) { Employee e = (Employee) o; return getName().compareTo(e.getName()); } }

Generally, the logic for comparison will be written the method compareTo. Here we are comparing the employee order or name of the employee field. Two employees will be equal if they have the same name.

Now when Arrays.sort(employees); is called in the above code, we now know what is the logic and order which goes in sorting the employees as per the age :

[("Earl", 43, 10000),("Frank", 33, 70000), ("Jessica", 23, 4000), ("John", 23, 5000),("Pearl", 33, 4000), ("Steve", 26, 6000)]

We can see the array is sorted by name of the employee – which now becomes a natural order for Employee Class.

6.2. Using Comparator

Now, let's sort the elements using a Comparator interface implementation – where we pass the anonymous inner class on-the-fly to the Arrays.sort() API:

@Test public void givenIntegerArray_whenUsingSort_thenSortedArray() { Integer [] integers = ArrayUtils.toObject(toSort); Arrays.sort(integers, new Comparator() { @Override public int compare(Integer a, Integer b) { return Integer.compare(a, b); } }); assertTrue(Arrays.equals(integers, ArrayUtils.toObject(sortedInts))); }

Now lets sort employees based on salary – and pass in another comparator implementation:

Arrays.sort(employees, new Comparator() { @Override public int compare(Employee o1, Employee o2) { return Double.compare(o1.getSalary(), o2.getSalary()); } });

The sorted Employees arrays based on salary will be:

[(Jessica,23,4000.0), (John,23,5000.0), (Pearl,33,6000.0), (Steve,26,6000.0), (Frank,33,7000.0), (Earl,43,10000.0)] 

Note that we can use Collections.sort() in a similar fashion to sort List and Set of Objects in Natural or Custom order as described above for Arrays.

7. Sorting With Lambdas

Start with Java 8, we can use Lambdas to implement the Comparator Functional Interface.

You can have a look at the Lambdas in Java 8 writeup to brush up on the syntax.

Let's replace the old comparator:

Comparator c = new Comparator() { @Override public int compare(Integer a, Integer b) { return Integer.compare(a, b); } }

With the equivalent implementation, using Lambda expression:

Comparator c = (a, b) -> Integer.compare(a, b);

Finally, let's write the test:

@Test public void givenArray_whenUsingSortWithLambdas_thenSortedArray() { Integer [] integersToSort = ArrayUtils.toObject(toSort); Arrays.sort(integersToSort, (a, b) -> { return Integer.compare(a, b); }); assertTrue(Arrays.equals(integersToSort, ArrayUtils.toObject(sortedInts))); }

As you can see, a much cleaner and more concise logic here.

8. Using Comparator.comparing and Comparator.thenComparing

Java 8 comes with two new APIs useful for sorting – comparing() and thenComparing() in the Comparator interface.

These are quite handy for the chaining of multiple conditions of the Comparator.

Let's consider a scenario where we may want to compare Employee by age and then by name:

@Test public void givenArrayObjects_whenUsingComparing_thenSortedArrayObjects() { List employeesList = Arrays.asList(employees); employees.sort(Comparator.comparing(Employee::getAge)); assertTrue(Arrays.toString(employees.toArray()) .equals(sortedArrayString)); }

In this example, Employee::getAge is the sorting key for Comparator interface implementing a functional interface with compare function.

Here's the array of Employees after sorting:

[(John,23,5000.0), (Jessica,23,4000.0), (Steve,26,6000.0), (Frank,33,7000.0), (Pearl,33,6000.0), (Earl,43,10000.0)]

Here the employees are sorted based on age.

We can see John and Jessica are of same age – which means that the order logic should now take their names into account- which we can achieve with thenComparing():

... employees.sort(Comparator.comparing(Employee::getAge) .thenComparing(Employee::getName)); ... 

After sorting with above code snippet, the elements in employee array would be sorted as:

[(Jessica,23,4000.0), (John,23,5000.0), (Steve,26,6000.0), (Frank,33,7000.0), (Pearl,33,6000.0), (Earl,43,10000.0) ]

Thus comparing() and thenComparing() definitely make more complex sorting scenarios a lot cleaner to implement.

9. Conclusion

In this article, we saw how we can apply sorting to Array, List, Set, and Map.

Мы также видели краткое введение о том , как особенности Java 8 может быть полезно при сортировке , как использование Лямбдами, сравнивая () и thenComparing () и parallelSort () .

Все примеры, использованные в статье, доступны на GitHub.